Science of Geologic Sequestration Project Number: LANL FE10-003 Task 3

Rajesh Pawar Los Alamos National Laboratory

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Transforming Technology through Integration and Collaboration August 18-20, 2015

Contributors

- Tissa Illangasekare (Colorado School of Mines)
- Michael Plampin (Colorado School of Mines)
- Mark Porter (LANL)
- Elizabeth Keating (LANL)
- Zhenxue Dai (LANL)

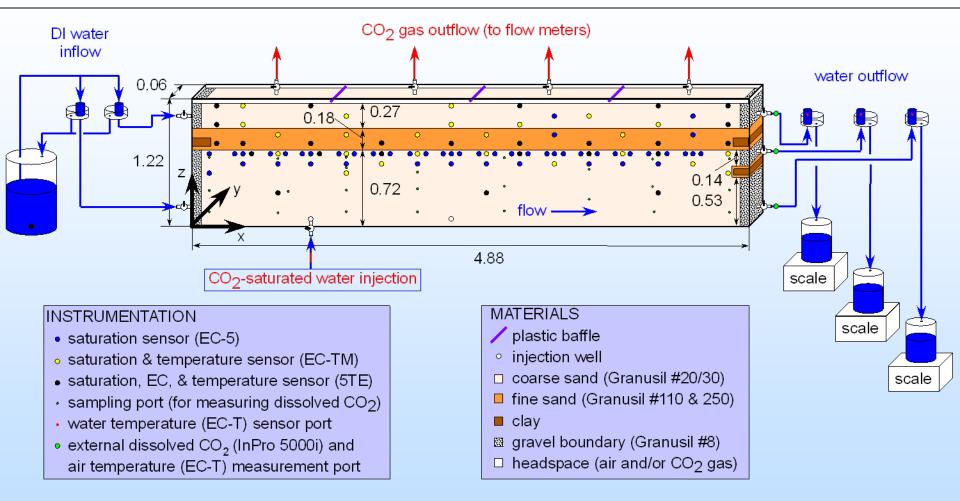
Presentation Outline

- Benefit to the program
- Project overview
- Project technical status
- Accomplishments to date
- Future Plans
- Appendix

Benefit to the program

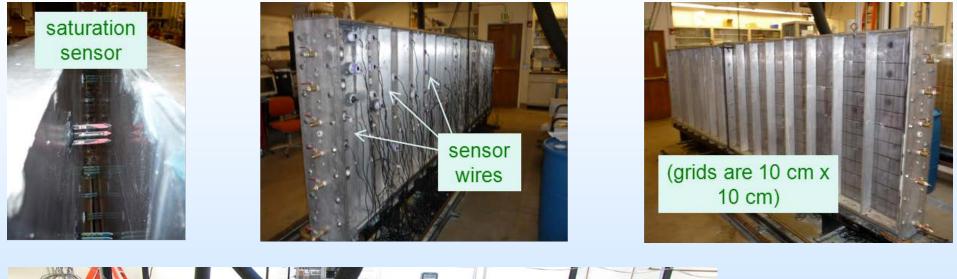
- Program goals being addressed:
 - Develop and validate technologies to ensure 99 percent storage permanence.
 - Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness.
- Project benefit:
 - Develop science basis that can be used to assess impacts of CO₂ leakage in shallow aquifers and to characterize leakage through faults. This technology contributes to the Carbon Storage Program's effort of ensuring 99 percent CO₂ storage permanence in the injection zone(s).
 - Develop science basis to characterize CO₂ storage potential in Residual Oil Zones (ROZs)

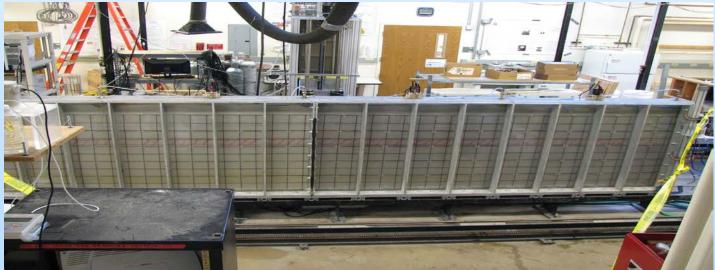
Project Overview: Tasks


- 1. Characterize multi-phase CO₂ flow in groundwater aquifers through an integrated experimental-simulation approach
- 2. Characterize multi-phase CO₂-brine flow through faults
- 3. Characterize CO₂ storage potential in Residual Oil Zones

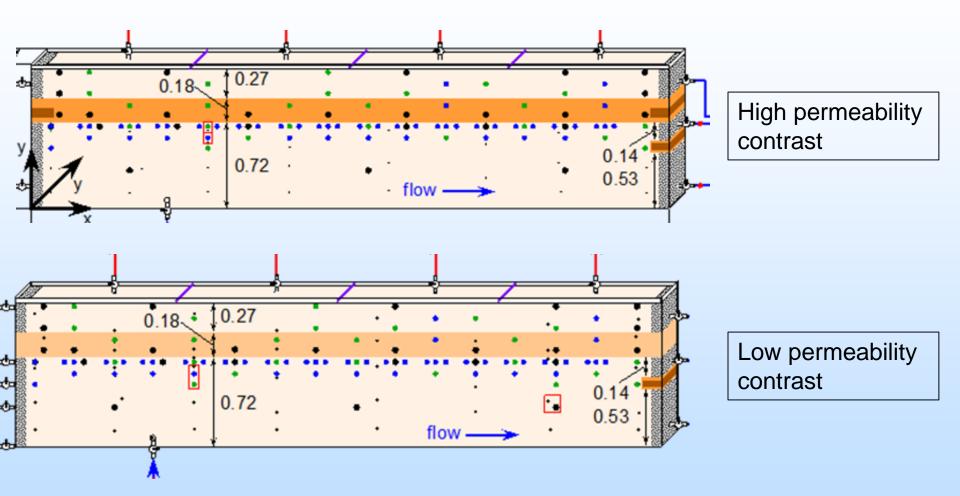
Characterization of CO₂-water multi-phase flow

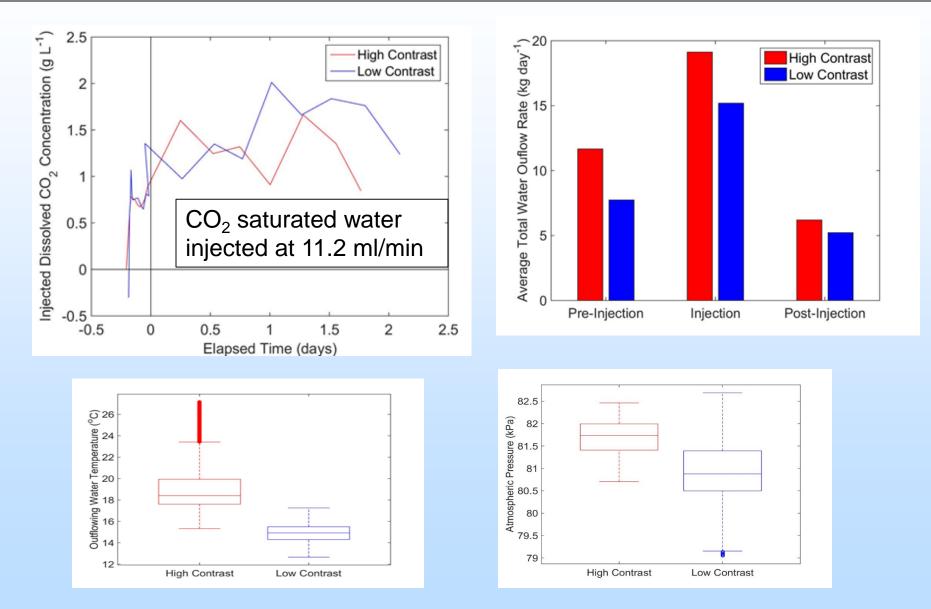
Goals & Objectives


- Understand the process of gas exsolution, gas phase expansion and CO₂ migration to characterize the impacts of CO₂ & CO₂-dissolved water leakage in groundwater aquifer as well as to deploy efficient monitoring/mitigation approaches
 - > What factors affect the spatiotemporal evolution of CO_2 migration
 - What role does heterogeneity play
 - Data to develop theory
- Integrated approach: intermediate scale experiments (1D column, 2D tank) coupled with numerical simulations

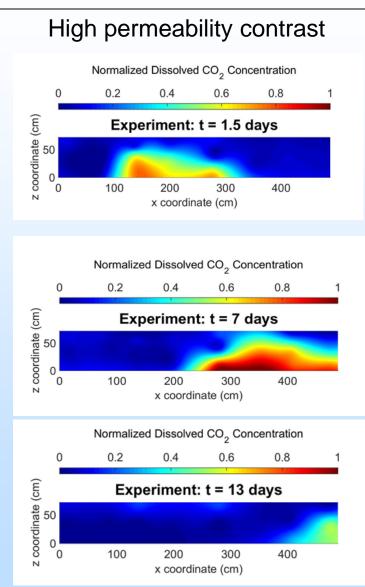

2-D Tank Experimental Setup

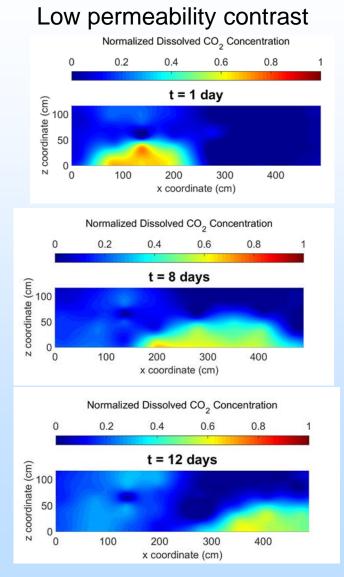
- Measurements taken from sensors, flow meters and scales every minute
- Aqueous phase samples taken at various intervals and analyzed for dissolved CO₂ with an Ion Chromatograph


Experimental Setup

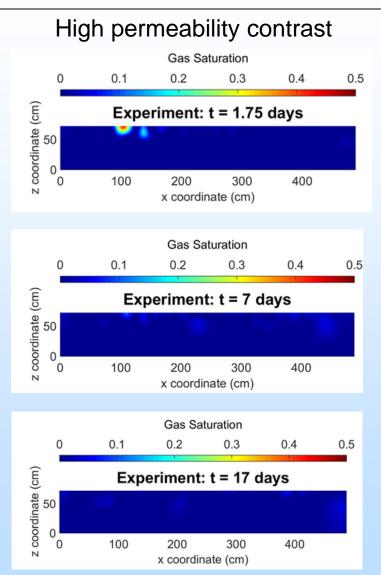


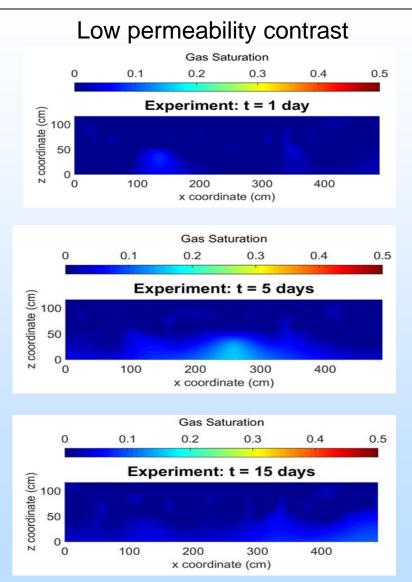
~ 3 months to pack and configure the tank


Effect of permeability heterogeneity on CO₂ exolution and migration

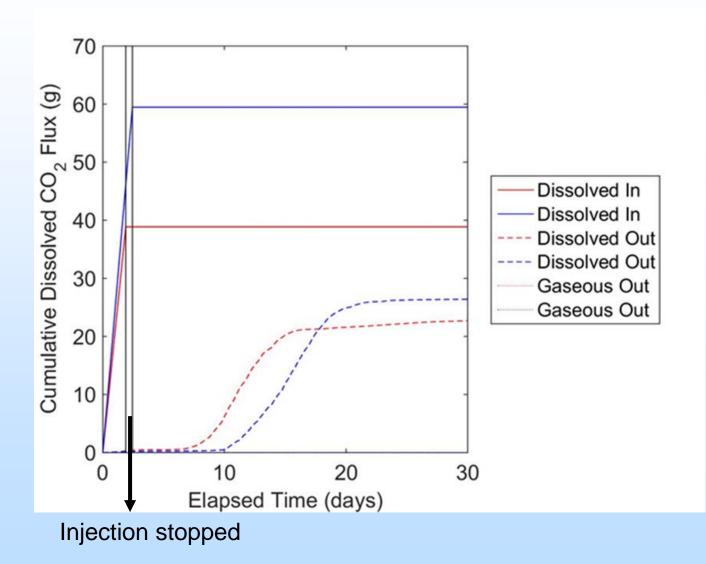


Experimental Conditions


Effect of permeability heterogeneity on CO₂ migration: dissolved CO₂



only the "lower aquifer" is shown


Effect of permeability heterogeneity on CO_2 migration: free phase CO_2

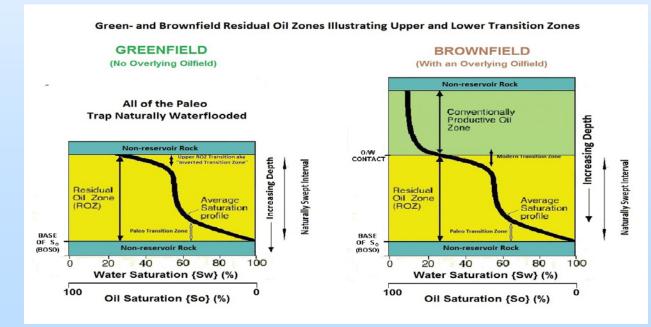
only the "lower aquifer" is shown

Macroscopic CO₂ Mass Balance

Negligible release of gas phase CO₂ to the atmosphere

Key Findings

- Permeability contrast (heterogeneity) affects CO₂ migration
- Background flow affects the existence of free-phase CO₂:
 - Higher fraction of CO₂ in dissolved-form
- Dissolved CO₂ plume primarily remains at the bottom
- CO₂ remains in the water (primarily dissolved) well after leakage stops
- Important implications on monitoring and mitigation


Next Steps

 Numerical simulation of experiments and extension of observations to real-world aquifer conditions

Characterization of CO₂ storage in ROZs

Residual Oil Zones (ROZs)

- ROZs are defined as those zones where oil is swept over geologic time period (natural flush) and exists at residual saturation
 - Brownfield: ROZ underlies a Main Pay Zone (MPZ)
 - Greenfield: no Main Pay Zone (MPZ) above ROZ

Graphic source: http://melzercons ulting.aptapb.com /residual-oilzones/

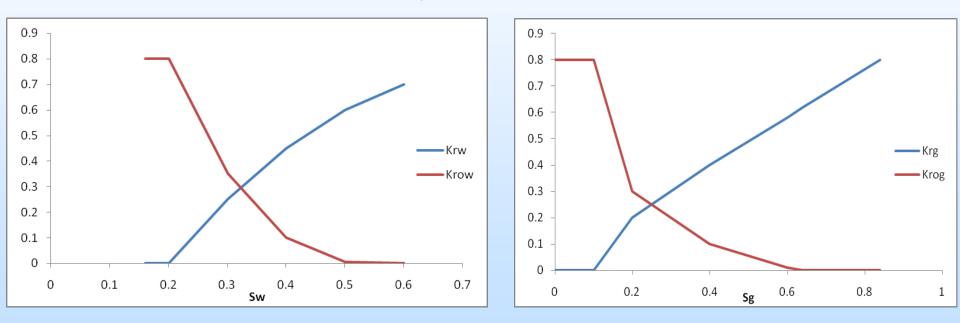
Residual Oil Zones (ROZs)

- ROZs are being increasingly exploited using CO₂-EOR:
 - Multiple on-going commercial field operations in Permian Basin
 - Significant potential for oil recovery
 - > Observed in other locations (e.g. Wyoming)
- Greenfield ROZs can be potentially explored for CO₂ storage:
 With a side benefit of incremental oil recovery
- Brownfield ROZ CO₂-EOR could lead to CO₂ storage similar to conventional EOR

Residual Oil Zones (ROZs)

- ROZs tend to have characteristics that are similar to saline reservoirs which are primary targets for CO₂ storage:
 - Thick target intervals
 - High porosity
- ARI and Melzer Consulting have performed studies to estimate potential CO₂ storage potential in the Permian Basin ROZ (preliminary studies):
 - Preliminary estimates indicate potentially high storage capacity
 - Capacity estimates need to be further refined with focused studies

Objectives

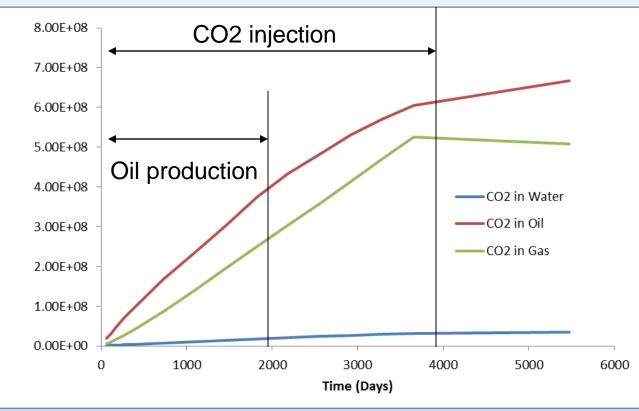

- Using numerical simulations we aim to characterize:
 - CO₂ storage potential (primarily in Greenfield ROZ)
 - > Long-term CO_2 fate
 - Assess uncertainties and data needs (limited data currently available)

Numerical Simulations

- Numerical model based on the model developed for Goldsmith-Landreth San Andres Unit in the Permian Basin
 - DOE funded study by UT-PB, Melzer Consulting and ARI
 - Field operated by Kinder Morgan
 - CO₂ flooding in ROZ and MPZ since 2010
- Our model focuses only on the ROZ (Greenfield equivalent)
 - 4320 ft x 4320 ft x 120 ft (36x36x10)
 - Rock properties based on log and core data: Porosity 8% - 20%, Permeability 6.25 mD – 62.5 mD
 - Original oil saturation 40% (residual) with no free gas

Numerical Simulations

- Fluid-rock relationships based on Seminole Field data reported by Honarpour et al (2010, SPE-133089):
 - Further updated through field history match by UTPB study

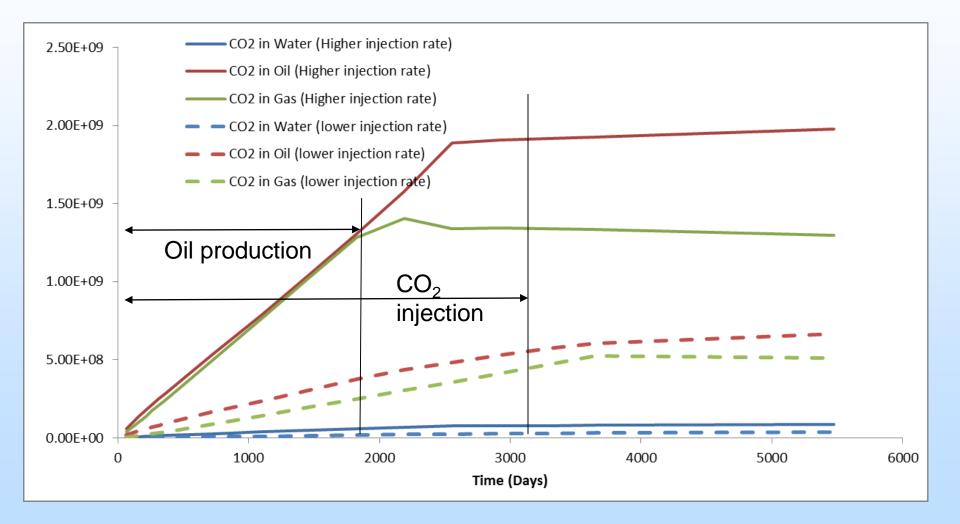

Sorm – 10%

Numerical Simulations

- Compositional simulations using E300
 - Oil composition based on field oil composition: represented as 10 component oil
 - > Solubility of CO_2 in water taken into account
- Simulations of CO₂ injection with simultaneous oil production (injector and producer at opposite corners)
 - Total simulation run for 15 years
 - > CO₂ injected at 90 tons/day for 10 years (max BHP 4000 psi)
 - Producer turned off after 5 years (produced at 500 psi BHP)

Numerical Simulations Results

- CO₂ injection leads to ~20% incremental oil recovery
 - > 106 MSTB without, 127 M STB with
 - High water production (~4.9 MMSTB)
- 99% of injected CO₂ remains in the reservoir
- Majority of CO₂ dissolved in oil or present in gas phase (97%)



Effect of higher CO₂ injection rate

- 5 times the rate of base case (450 tons/day) with same BHP constraint (4000 psi)
 - BHP constraint limits total injection to 3 times of base case

	Base Case	Higher Injection Rate
Retained CO ₂	99%	99%
Oil production	127 M STB	91 M STB
Water production	4.9 MM STB	8.27 MM STB

Effect of higher CO₂ injection rate

Accomplishments FY16

- Completed 2 sets of 2-D tank experiments on post CO₂ leakage multi-phase flow in groundwater aquifer
 - Results have significance on monitoring and mitigation strategies in groundwater aquifers
- Initiated preliminary studies on CO₂ storage potential of ROZ

Synergy Opportunities

 Collaboration on ROZ: UTPB, Melzer consulting, ARI

Key Findings, Future Plans

- Significant results with practical implications:
 - Groundwater leakage impacts
- Experimental data on CO₂-brine leakage in 1-D columns and 2-D tanks: available for model development and testing

Future Plans:

- Complete 2-D tank experiment related numerical simulations:
 - Data sets and parametric analysis on effect of groundwater hydrologic parameters on CO₂ migration and implications on monitoring/mitigation
- Continue work on characterization of CO₂ storage potential in ROZ

Appendix

Organizational Chart

- PI: Rajesh Pawar
- Program Manager: George Guthrie
- Team Members:
 - Prof. Tissa Illangasekare (Colorado School of Mines): CO₂ release experimental characterization
 - Michael Plampin (Colorado School of Mines): CO₂ release experimental characterization
 - Mike Porter: Numerical simulation of CO₂ release experiments
 - Elizabeth Keating: Fault flow characterization
 - Zhenxue Dai: ROZ CO2 storage potential characterization

Bibliography

- Plampin, M., Lassen, R., Sakaki, T., Porter, M., Pawar, R., Jensen, K., and Illangasekare, T., Heterogeneity-Enhanced Gas Phase Formation in Shallow Aquifers During Leakage of CO₂-Saturated Water from Geologic Sequestration Sites, Water Resources Research, 50, 9251-9266, 2015.
- Sullivan, E.J., Chu, S., Pawar, R., Probabilistic cost estimation methods for treatment of water extracted during CO₂ storage and EOR, accepted for publication by International Journal of Greenhouse Gas Control.
- Porter, M., Pawar, R., Plampin, M., Illangasekare, T., CO₂ leakage in shallow aquifers: A benchmark modeling study of CO₂ gas evolution in heterogeneous porous media, International Journal of Greenhouse Gas Control, 39, 51-61, 2015.
- Plampin, M., Illangasekhare, T., Sakaki, T., Pawar, R., Experimental study of gas evolution in heterogeneous shallow subsurface formations during leakage of stored CO₂, International Journal of Greenhouse Gas Control, 22, 47-62, 2014. 32

Bibliography

- Keating, E.H., Dai, Z., Dempsey, D. Pawar, R., Effective detection of CO₂ leakage: a comparison of groundwater sampling and pressure monitoring, Energy Procedia, 2014, 63, 4163-4171.
- Porter, M., Plampin, M., Pawar, R., Illangasekare, T., CO₂ leakage into shallow aquifers: Modeling CO₂ gas evolution and accumulation at interfaces of heterogeneity, Energy Procedia, 2014, Vol. 63, pp. 3253-3260.
- Sullivan, E. J., Chu, S. P., Pawar R. J., Stauffer, P. H., The CO₂-PENS water treatment model: evaluation of cost profiles and importance scenarios for brackish water extracted during carbon storage, Energy Procedia, 2014, Vol. 63, pp. 7205-7214.
- Plampin, M., Porter, M., Pawar, R., Illangasekare, T., Multi-scale experimentation and numerical modeling for process understanding of CO₂ attenuation in the shallow subsurface, Energy Procedia, 2014, Vol. 63, pp. 4824-4833.

Bibliography

- Sakaki, T., Plampin, M. R., Pawar, R., Komatsu, M., Illangasekare, T. H., What controls carbon dioxide gas phase evolution in the subsurface? ~ Experimental observations in a 4.5m-long column under different heterogeneity conditions, International Journal of Greenhouse Gas Control, pp. 66-77, doi:10.1016/j.ijggc.2013.03.025, 2013.
- Sullivan, E. J., Chu, S., Stauffer, P., Middleton, R., Pawar, R., A method and cost model for treatment of water extracted during geologic CO₂ sequestration, International Journal of Greenhouse Gas Control, 12, 372-381, 2013.
- Sullivan, E. J., Chu, S., Pawar, R., Stauffer, P., A CO₂-PENS model of methods and costs for treatment of water extracted during geologic carbon sequestration, Desalination and Water Treatment, DOI:10.1080/19443994.2012.714727.